Heximal, or: how to really read hexadecimal
Many debates have been had about the "correct" way to pronounce hexadecimal numbers. If you ask me, the best way to do it is to just read the letters out loud, or use the Nato phonetic alphabet. But what if you don’t want to simply read hexadecimal? What if you want to.... count?
Many brave souls have tried, but more often than not, the names seem utterly nonsensical. Christeen, dickety-one, and fimteek are just some of the horrors found in existing ideas for hexadecimal numbering. Armed with inspiration from jan Misali’s seximal, i set out to make a better system. Introducing: heximal.
Counting from 1–F
Counting from 0–C0 is easy:
Number | Word |
---|---|
1 | one |
2 | two |
3 | three |
4 | four |
5 | five |
6 | six |
7 | seven |
8 | eight |
9 | nine |
A (10) | ten |
B (11) | eleven |
C (12) | twelve |
Where we go from here is a challenge. Given that this is base sixteen, we can’t exactly say thirteen, fourteen, or fifteen, since those come from decimal terms; so, we instead use shortened forms of the Nato phonetic alphabet’s letters: del from Delta, eck or ech1 from Echo, and fox from Foxtrot.
Number | Word |
---|---|
D (13) | del |
E (14) | eck or ech |
F (15) | fox |
...And further!
10 is, of course, called hex. There’s no messing about with thirteen-type formulations; right after hex comes hex-one.
Number | Word | |
---|---|---|
10 (16) | hex | |
11 (17) | hex-one | |
12 (18) | hex-two | |
13 (19) | hex-three | |
etc. | ||
1F (31) | hex-fox |
Numbering continues along roughly the same lines as the decimal -ty sequence; in this case, the relevant suffix is -ex. (Some familiar numbers are included in the table below to aid recognition.)
Number | Word |
---|---|
20 (32) | twennex |
21 (33) | twennex-one |
2A (42)2 | twennex-ten |
30 (48) | thirex |
40 (64) | fourex |
50 (80)3 | fiffex |
60 (96) | sixex |
69 (107) | sixex-nine4 |
70 (112) | sevenex |
7A (122)5 | sevenex-ten |
80 (128) | eightex |
90 (144) | ninex |
A0 (160) | tennex |
B0 (176) | elevex |
C0 (192) | twelvex |
D0 (208) | deltex |
E0 (224) | eckex or echex |
F0 (240)6 | foxex |
FF (255) | foxex-fox |
Greater and greater numbers
The logical term for a value of 100 is, of course, a byte.
Number | Word |
---|---|
100 (256) | one byte |
3E8 (1000) | three byte eckex-eight |
7E4 (2020)7 | seven byte eckex-four |
There is no distinct word for 104; the numbering system simply continues into the hex-bytes.
Number | Word (rounded to 3 s.f.) |
---|---|
1000 (4096) | hex byte |
2710 (10 000) | twennex-seven byte hex |
2EF5 (12021) | twennex-byte foxex-five8 |
Many programming languages refer to numbers smaller than 104 (65 536) as shorts, so that’s what we’ll call said number.
Number | Word (rounded to 3 s.f.) |
---|---|
1 0000 (65 536) |
one short |
1 6B00 (93 000) |
one short sixex-eleven byte9 |
F 4240 (1 000 000) | fox short fourex-two byte |
18 8E80 (1 609 334) | hex-eight short eightex byteA |
27 6000 (c. 2 580 000) | twennex-seven short sixex byteB |
109 0000 (c. 17 400 000) | one byte nine shortC |
138C E200 (c. 328 000 000) | hex-three byte shortD |
3B9A CA00 (1 000 000 000) | thirex-eleven byte short |
We can continue on, extending short in the vein of decimal’s -illion series.
Number | Word | Decimal |
---|---|---|
108 | one bort | 4.29×109 |
1.CF×108 | one bort, twelvex-fox byte shortE | 7.76×109 |
10C | one trort | 2.80×1014 |
8.E9×109 | eight trort, eckex-nine byte shortF | 4.01×1016 |
1010 | one quadrort | 1.84×1019 |
2.58×1010 | Two quadrort, fiffex-eight byte trort10 | 4.33×1019 |
7.F8×1013 | Sevenex-fox byte eightex quadrort11 | 6.02×1023 |
1014 | one quinort | 1.21×1024 |
1018 | one sexort | 7.92×1028 |
101C | one septort | 5.19×1033 |
1020 | one octort | 3.40×1038 |
1024 | one nonort | 2.23×1043 |
1028 | one decort | 1.46×1048 |
102C | one elevort | 9.58×1052 |
1030 | one dozenort | 6.28×1057 |
1034 | one delort | 4.11×1062 |
1038 | one eckort or echort | 2.70×1067 |
103C | one foxort | 1.77×1072 |
1040 | one hexort | 1.16×1077 |
1044 | one hexishort | 7.59×1081 |
1048 | one hexibort | 4.97×1086 |
1080 | one bihexort | 1.34×10154 |
10C0 | one trihexort | 1.55×10231 |
10100 | one quadrihexort; one hexgol | 1.80×10308 |
10400 | one bytort | 1.04×101233 |
104000 | one hexibytort | 2.00×1019278 |
I’ve decided to end the naming scheme just short (heh) of what would otherwise be a "shortort", to save it from collapsing in on itself. This means that the largest named number is...
Number | Word | Decimal |
---|---|---|
1040000-1 | foxex-fox byte foxex-fox foxihexifoxibytifoxihexifoxort, foxex-fox byte foxex-fox foxikayfoxibytifoxihexeckort, [...] foxex-fox byte foxex-fox | 6.74×10315652 |
...
Oh, go on then. Two more.
Number | Word | Decimal |
---|---|---|
1010100 | one hexgolplex | 102.16×10308 |
101010100 | one hexgolplexian | 10102.16×10308 |
Try it yourself!
This little widget will convert decimal and hexadecimal numbers into heximal words. Why not give it a go?
+---------------------+ |\* marijnflorence. */| |\\ neocities.org //| | _\~._.~='*'=~._.~/_ | || * <+ -> * || || \ . `O' , / || ||--+_| + |_+--|| || `\ /' || || ,~. (@)~(@) ,~. || ||~'@@( )'(@)`( )@@`~|| ||@@@@@( )( ( )( )@@@|| ::@@@( )@( )( ) )@@@@:: \\@@@( ) )( ) )@@@@// \\@@@@( )( )@@@@@// \\@@@@@( )@@@@@// `:\@@@@*@@@@/:' `:-.@@@.-;' `-----'
Page created: 2EF4-2-0F (12020-02-15)
Page last updated: 2EF5-2-1A (12021-02-26)